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Abstract A new bond auxiliary particle method for the Hubbard, t-J and Heisenberg 
Hamiltonians is presented. First, the one-dimensional (ID) Heisenberg Hamiltonian is studied 
a! a test case. The exact ground state is approached rapidly via perturbation theory At the 
level of second-order perturbation theory, the ground state energy is accurate within a few per 
cent, while in the 15th order it is accunte to five figures. Without any renormalization, the spin 
velocity is given with 10% accuracy, and the spectrum is correctly gapless. The degeneracy is 
also correct, giving a Wilson ratio R = 2. The method is used to calculate analytically the full 
Green’s function for a single hole in a half-filled (one electron per site) r-J model. 

The principal problem with the usual ‘slave boson’ auxiliary particle method, devised by one 
of the present authors [I], is that as a practical matter it is impossible to describe accurately 
the RVB-type spin ground state [2 ] ,  appropriate to the ID Hubbard, t-J and Heisenberg 
Hamiltonians and maintain the constraint, Qj = 1,  that the number of auxiliary particles at 
a site is always exactly unity. This is unfortunate since it is an exact result, that for U >> f, 
(f >> J ) ,  this type of spin ground state is the spin ‘vacuum’ for the I D  Hubbard and t-J 
Hamiltonians with a thermodynamic density of holes. It is also widely speculated that a 
similar RVB state is relevant, at finite doping, €or the two-dimensional problem of interest 
in the high-T, context. What is proposed here is a new bond-orientated auxiliary particle 
method which can accurately describe this spin vacuum state. 

The usual slave boson method [ I ]  has auxiliary particles assigned to each site. With 
the new approach, similar particles are assigned to each possible state of a bond, i.e. two 
sites i and j .  There is now a constraint that Q j j  = 1 for each bond. As explained 
above, the difficult problem in connection with the Hubbard and r-J model, is the accurate 
description of the spin vacuum near half filling, i.e. a relevant test case is the one- 
dimensional Heisenberg Hamiltonian. This motivates us to demonstrate that the present 
new bond approach accurately describes the ground state and certain key excited states of 
this simpler Hamiltonian. It is shown here that a second-order perturbation theory for which 
Qij = 1 is maintained exactly yields results for the ground state energy accurate to - 1%. 
In 15th order, this perturbation theory converges to the exact ground state energy to five 
figures and with a similar precision it can be asserted that the perturbation series does in 
fact converge [3]. 

While it is impressive to recover known results with great accuracy, what is needed in 
the present context is a mathematically tractable quantum field theory for the excitations 
and in the presence of holes. Still, for the ID Heisenberg Hamiltonian, the lowest-lying 
‘spinwave’ excitations with a given wavevector have been calculated long ago [4], In a more 
modern language these are a set of gapless fermionic excitations which are characterized 
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by a spin velocity us. (For the Hubbard, or r-J Hamiltonians there is a second charge 
velocity uc.) Without any renormalization, the present approach yields the correct gapless 
excitations with a v, which is good to better than 10%. However, in the authors' opinion, 
the most impressive part of this development is its simplicity. At the present level of 
renormalization this 'spinwave' problem is no more difficult than, see equation (9), and 
probably as accurate as, the Holstein-Primakoff theory for true spinwaves for the symmetry 
broken antiferromagnetic ground state. (The theories, while similar mathematically, are 
different: it is an important point that the present 'spinwaves' are three times degenerate 
while true antiferromagnetic spinwaves are only doubly degenerate. The velocities also 
differ.) 
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F i p  1. (a) The I D  and (b) 20 bond scheme. The solid bonds are taken to have parameters 
I and I, while the other, dashed bonds, have differen6 smaller values I' < I  and J' < J, The 
limit I' -, I and 3' -+ I is taken at the end of the calculation. 

Since the results described above are well known, and since these calculations do not 
test the utility of the approach in connection with the kinetic energy terms, the method has 
also been used to calculate the Green's function Gi., of a single hole for the r-J model. To 
the authors' knowledge, results for this quantity are not known, at least analytically and in 
the thermodynamic limit. It is shown that, if k is the physical momentum of the hole, and 
if k' is the momentum of the spinless fermions, with 6k' = -Zrcosk', which describe the 
charge sector of this model, then &k has poles at energies corresponding to k' = k f n/2. 
It is implied that the Fermi surface opens at rtn/2. as is known. It is possible to calculate 
the Green's function for a thermodynamic density of holes; however, this corresponds to 
the Luttinger liquid behaviour, is much more complicated, and involves a number of simple, 
but involved, steps. These developments will be reported elsewhere. 

Consider the t-J model 

This Hamiltonian includes both magnetic interactions and hole motion and serves to illustrate 
well the formalism in its generality. This is first generalized as illustrated in figure 1. The 
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solid bonds are taken to have parameters t and J ,  while the other, dashed bonds, have 
different, smaller, values t' i t and J'  < J .  The limit t' -+ f and J' + J is to be taken at 
the end of the calculation. Within this more general t-J model and when t' = J'  = 0, the 
eigenstates of a bond with one or two, and trivially, zero electrons are determined exactly. 
For J > 0, the ground state of a doubly occupied bond is a spin singlet with an energy of 
- J  relative to a triplet. The auxiliary Bose particles si and ti,, with a = -1,O. + I ,  are 
associated with these states and this configuration. For a singly occupied bond there is no 
exchange energy. The exact eigenstates are bonding and anti-bonding orbitals at -t and 
+t respectively. The associated Fermi particles are bin and aio, a = & I  corresponding to 
spin *1/2. Clearly the empty bond has no energy. The associated (Base) particle is el. In 
this new scheme the physical conduction electron field is 

t t 

t t 

where the sign depends on whether the ct corresponds to the right or left hand side of a 
bond, U = + I  as the spin is up or down, and where i is an even integer which labels a 
bond on a row with integer label j .  There is, as usual with auxiliary particle methods, a 
constraint that the bond charge 

Qij = st.s J L J  .. + et.e.. U ' J  + (b!i,bij,, + afi,aiju) + tjjatijq = 1. 
0=+1 0 = i I . O  

The unperturbed part, XO, of the Hamiltonian accounts for the t and J bonds and is 
explicitly 

where the singlet has been re-assigned a zero energy and the energy associated with the 
empty bond has been dropped. Here the sum on (ij) implies solid bonds. 

The last step in the formalism is to include the 1' and J '  bonds as coupling terms. The 
J' terms are 

which is written in terms of the operators 

d t . .  DZJ = t t . . s , .  .TI1 ' J  (U = 0, &I) 

(4) sf. = do,ij t + do,ij st = - d-l , i j )  
'J ' I  

where S,,+ is set of S = 1 spin matrices and where it is understwd that here the sums 
( i j ,  i ' j ' )  are over all dashed bonds where the bond i'j' is to the right of that with the labels 
ij. In terms of the same operators, the last term in Xo is 
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The d:jv have on-site fermion, and off-site boson, commutation rules, i.e. are hard core 
bosons. In one dimension this, via a Jordan-Wigner transformation, is equivalent to 
fermions, (These fermions are hard core with respect to the equivalent particle but with a 
different U , )  

In their full generality, the t' terms cannot be very usefully abbreviated. They are 

were the c : * ~ ,  ,~ are defined by ( I ) .  
Consider, first, the Heisenberg model where the f and r' terms are not relevant. 

Fortunately for both the one- and two-dimensional (2D) cases the convergence problem 
of the present perturbation approach to the spin vacuum is well understood. Singh er 
al [3], have developed a systematic scheme for the perturbative diagonalization of the 
present generalized model using the same basis set as is implicit here. They show, based 
on 15th-order perturbation theory for the ID case, there is extremely strong evidence that 
the perturbation theory converges even when J = J', in the present notation. For two 
dimensions the series expansion is not absolutely convergent under the same circumstances. 
However, the good convergence properties in low order leads us to speculate that the series 
is asymptotic and that in low order it converges reasonably well to a local minimum which 
lacks the broken symmetry of the true ground state but which is very close in energy. 

In fact, it is an old observation that EO reflects a large part of the ground state energy in 
both one and two dimensions. In one dimension, this corresponds to (Si .Si) = -(3/8)J = 
-0.37J while the exact result is -0.445. In two dimensions the corresponding figures 
are -0.19J and -0.335, where this latter corresponds to an estimate [5] for the ground state 
energy for the true broken symmetry antiferromagnetic state. The state vector corresponding 
to this singlet bond ground state is I f ) o  = nij sijl ) where I ) is the vacuum with no auxiliary 
particles. The state l;)~ can be thought of as the vacuum for perturbation theory. 

The only terms which couple I i ) o  to excited states are (J"/4)d~Vd!oi , j .  and, at the level 
of second-order perturbation theory the renormalized wavefunction is 

r J  

f 

which is of a Bcs form. The parameter 01 can be determined by perturbation theory or can 
be used as a variation parameter. Determining 01 by the variational principle leads to a strict 
bound for the energy. 

Consider one dimension and second-order perturbation theory. The matrix element is 
J'/4 to each of three possible excited states. This excited state would be at an energy of 
23 if it were not for the interaction between the adjacent triplets and which lowers the 
energy to 3J/2 when J'  = J .  Since there are three possible triplet excitations, the energy 
correction is 3 x ( J / 4 ) ' / ( 3 J / Z )  = ( J / 8 )  per dashed bond. Since there are half dashed and 
half solid bonds the net energy per bond is 
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which is within about 1% of the exact result (-JSi. Sj) = -0.443147J. Singh er a1 [3], 
obtain -0.44314 & 0.00001 with 15th-order perturbation theory. It is impressive that the 
result is already very good at the level of the second-order theory and lends support the 
idea that the theory at that level will yield reliable results. The variational estimate gives 
an upper bound of -0.427J, which remains impressively close to the exact value. 

It is to be recognized that rather bad wavefunctions can give rather good energies. 
Clearly a good theory must give a good energy, however that the energy is good within 
the second order theory can only be interpreted as lending support for our approach. In 
effect, when J = J ' ,  the 'smallness parameter' is l/2(&) = 0.289 which is encouraging, 
especially in view of the fact that the first correction is only 1/8. It is implied that second- 
order perturbation omits only a correction of roughly 0.037J and which, consistently, 
represents a little more than 2% of the ground state energy. 

For two dimensions. in the equivalent perturbation calculation, there is an extra 
correction to the excited state energy due to a resonance between six different configurations 
of excited triplet configurations. This lowers the excited state configuration by an extra 512. 
The energy per bond is now 

- -0.328J. 
1 3 J  3 3 J  
4 4  4 1 6  

- - - - - - - 

Here the exact result is not known; in fact, the calculations of Singh er al 131, indicate that 
when J ' / J  > 0.39 the perturbation theory diverges. As stated above, we speculate that 
there exists a locally stable ground state, i.e., that the series is only asymptotically divergent. 
The energy of the absolute, antiferromagnetic, ground state is estimated [5] to be N_ - f J 
per bond, and again our perturbation result is impressively close. However, here the lower 
bound given by the variation wavefunction is -0.275, indicating higher-order terms are 
required in order to obtain a reliable result. 

It is to be emphasized in the context of the ZD calculations that the present perturbative 
vacuum can only become the true vacuum at finite doping. 

While the calculations of Singh er a1 provide more precise results, they do not provide 
a theory for the excitation spectrum. These aspects of the problem are dealt with next. 
Of course, the reliability of such an approach is predicated upon that for the vacuum, i.e. 
ground state. 

The Bethe approach [4,6] shows that the lowest-lying spin excitations, with a given 
wavevector, are triply degenerate corresponding to S = 1 .  These 'spinwaves' correspond to 
spin-flip excitations relative to the ground state. If we consider only a single such excitation, 
the relevant Hamiltonian is 

(9) 
J' 

d!jodij, - - 'Msw = J (diild,,i,j, + (-lYd:ild!,,i,j, + HC). 4 ~. . ., ., (ij)o=fl.O ,,,,I )0=(KI 

This is easily diagonalized by a Bogoliubov transformation, to yield for J = J' the gapless 
dispersion relationship 

cq = A ~ s i n q .  (10) 

The Bethe method yields [4] a dispersion relationship cq = %Jsinq ,  i.e. implies that 
the spin velocity vs = $ J .  In (10) the coefficient -h = 1.414 has replaced the exact 
n/2 = 1.570. More important than the relatively good result for the spin velocity, is 
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the fact that the degeneracy is correct and that the spectrum is gapless. The latter is a 
delicate result. For all values of J' c J there is a spin gap. It should be noted that (i) 
the spinwave theory for the antiferromagnet ground state is similar, with a coefficient I.OJ, 
but has the wrong degeneracy. (ii) In two dimensions, the spinwave energy is imaginary 
for small Q when J'  = J .  indicating the global instability of the ground state towards 
the antiferromagnetic possibility. In fact the imaginary roots appear when J ' / J  = 1/3, in 
relatively good agreement with the 'critical' value 0.39 obtained by Singh et al [3], using 
sixth-order perturbation theory. 

Of course, using the Bogoliubov transformation to solve the spin excitation problem is 
inconsistent with the assumption that there is  only a single excitation present. In fact the 
approach leads to a new ground state wavefunction which we have not yet Fully investigated. 
However, due to restrictions implied by the value of the ground state energy, the total number 
nt of triplet excitations must be such that nt c 0.3 in one dimension and implies that the 
term omitted in the present approach are not too important. However, in reality there are 
renormalization effects and presumably including such corrections will improve the value 
for us. It is perhaps worth pointing out that an exactly similar approximation of ignoring 
interactions is  made in the Holstein-Primakoff theory [7] of antiferromagnetic spinwaves. 

It should be that, for a Heisenberg chain, the spin susceptibility x = p2/2nv, where 
the Zeeman energy is -[pIHS,.  In the present development the change in S, produced by 
the presence of the field implies a finite number of free U = t 1 triplet excitations which 
leads directly to the quoted result for the susceptibility and implies the same level of error 
in x as there is in us. Within the Bethe method [4,6] the specific heat is calculated with a 
fixed number of overturned spins, i.e. for a fixed value of S,. In the absence of a field it is 
implied that the equivalent of particle-hole excitations correspond to either the excitation of 
two to excitations or a t ] ,  1-1 pair, i.e. there are only two sets of thermodynamic excitations 
for fixed S, rather than the three that might be first expected for S = 1. It follows from an 
elementary calculation that the Wilson ratio is R = 2 as for the exact solution. 

The last problem to be treated here is that of the propagation of single hole. It is now 
necessary to consider the spin ground state problem when there are an odd number of spins. 
Evidently if one begins with an even number of spins and creates a hole, as the first step 
in calculating a Green's function, then one inevitably encounters the odd spin problem. 
Technically it is better to begin with an even number of spins but with a single hole in 
the system and then create an electron at this position thereby adding an extra spin. This 
procedure is better since the odd spin can be though of as an isolated spinon which is 
destroyed when the hole is created. The alternative creates a hole and a spinon 'hole' in 
the same process and leads to a technically more involved two-particle problem. 

If there is a hole and an even number of spins there must be an odd number of sites, and 
therefore there is a single site which cannot be covered by a bond. 'Ihe convention is chosen 
that this be site zero. At this site there is either a fermion fj or a boson bi corresponding 
to the two singly occupied and unoccupied sites, respectively. Sites 1,2; 3,4; and 5 ,6  etc, 
correspond to bonds and have associated bond particles. The bond spin vacuum has this 
same site occupied by an electron and corresponds to 

It is doubly degenerate, corresponding to U = +1/2. If there is a hole at site 0 the state 
vector is 
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Creating an electron via cj=,,, = f Jbo  at this site relates the two vectors, i.e. 

(13) t 
10% 0) = Ci*,"IO) 

and implies the matrix element 

(14) t 
(0, OICi=O.a IO) = 1. 

There is an essentially equivalent state, with the hole at site 2, generated by the action 
of the transfer terms plzpol where pi, j  = E, c/,,,cj,,,. Explicitly this state is 

The first two sites are now occupied by a singlet and there is the hole at site 2. If the singlets 
are assigned zero energy, and if the perturbative corrections to the energy are ignored, then 
the exchange energy of the state IO) is evidently zero. The 12) has the same energy at the 
same level of renormalization, if J' = J .  Since it might be unclear what is and what is not 
a perturbation, this unperturbed energy is defined as that obtained by taking the expectation 
value of the Hamiltonian. On this basis, the state 

11) = POl10) (16) 

which has the hole in the middle of a singlet has a different, higher, energy. This lacks the 
exchange energy -35 14 associated with this latter singlet. In general, the odd site states, 
lZn+ I ) ,  have an exchange energy 35/4 larger than the even site equivalents, i.e. 12n). The 
set of, e.g., even site states are degenerate. It follows that, in the ground state, these states 
can differ at the most by a phase factor. Also, since these same states only differ from each 
other by translations, this phase factor must define a momentum, i.e. be of the form 
The matrix elements of the kinetic energy connect the even to the odd site states but there 
are no matrix elements of this term with any other states. It follows that, at the present 
level of approximation for the exchange interaction, the ground state is of the form 

For reasons which will become evident below, it is important to reflect upon the nature 
of the boundary conditions for the above wavefunction. If the conditions to be used are 
periodic, then there are two distinct states with a hole at a given site. There is a state 
obtained by translating, towards increasing site numbers, the hole the minimum number of 
times to arrive at a given site. In addition, there is a different state obtained by a translation 
which is longer by N ,  the total number of sites. At least in the thermodynamic limit, the 
corresponding two spin states are independent and orthogonal, to a very good approximation. 
These two spin configurations have been implicitly included, using an evident definition, 
by extending the upper limit of the sums from N j 2  to N .  

Assuming t >> J ,  then the secular equation for the coefficients A and B simplifies to 
the dispersion relationship 

(18) 
35 
8 

< ~ = - + Z t c o s k  
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i.e. except for the unimportant shift 3J /8 ,  the result expected for a free hole (holon). 
Turning to the single spinon problem, it is tempting to define exactly equivalent states 

obtained by filling the hole with an electron of a given spin direction. However, this strategy 
is flawed since the resulting spin states are not linearly independent. It is simple to define 
a state, evolved from 

D Vacaru and S E Bames 

IO? 0) (1% 

by the spin permutation operator, 

Pjj = 2Sj .  si+- . (20) ( 3 
Consider the three states, I t. O), POI I t, 0)and P12P0ll t, 0). These are not independent 
since, I t ,  0) + P12Poll f. 0) = Poll t, 0). It suffices to define the 1u.21~) in order to have 
a linearly independent set, However, it remains the case that this set are not orthogonal. It 
is observed that the interaction between adjacent spins can be written either as JS, . Sj or 
f P i j ,  since the two definitions differ only by an unimportant additive constant. Clearly the 
effect of the interaction is, e.g. 

Again ignoring the perturbative corrections to the spin wavefunction, the spin ground state 
must be a linear combination of the form 

involving only even sites. However, again care must beexercised with the periodic boundary 
conditions. 

There is a second possibility for the spinon to occupy an odd-numbered site. This new 
possibility is obtained from the reference state by more than N permutations. Again, for a 
thermodynamic system, this second state is independent. With this the single spinon ground 
state is now 

N 
[U, k) = A x e i t ( h ) l u ,  2n) ,  (22) 

using a similar convention for an index greater than N / 2 .  Despite the fact that this involves 
non-orthogonal states, it is easy to show, ignoring perturbative corrections, that this is a 
good approximative eigenstate with an energy 

n=O 

E ~ = J + J c o s 2 k  (23) 

and therefore that the ground state corresponds to k = a/2. It is implied that the 
wavefunction changes sign each time the spinon hops the mandatory minimum of two 
sites. 

Since there is not a direct correspondence between the spinon basis states and the hole 
basis, and because the spinon basis are not orthogonal, the calculation of the relevant matrix 
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elements necessary in the determination of the Green's function for a single hole is a little 
involved. As already noted, in the spin wavefunction, there are not the equivalent states 
generated by filling the hole in the 'odd' site terms with the coefficient B.  However, this 
term can be eliminated by taking the combination 

Ik) + Ik + n). (24) 

The effect of c i ,  = C,eik".c!. on this combination is, to within a normalization 
constant, lu, k +k') .  If this is to be the spinon ground state, then it  must be that k+k' = n/2 
or that, 

(25) 

The minus sign reflects the fact that one of the momenta corresponds to an electron 
coordinate while the other reflects that of a hole. The shift by 5 reflects the momentum of 
the spinon in the spin ground state. It is imphed that 

, =  
2 

k = - k  +--. 

$[I - k - n/2) + I - k + n/2)] = c,, ]U, n/2) (26) 

where it is intended that all the vectors are normalized. The coefficients in this expression 
follow from sum rule considerations, a requirement of a gauge symmetry reflected by the 
existence of zero energy (1112 t ,  -n/2 $) spinons, and the fact that there is one electron 
per site in the spin ground state (see below). 

Since, at the present level of approximation. the I - k * 5)  are single-hole eigenvectors 
of the energy, it is simple to write down the Green's function in momentum-frequency 
space, i.e. 

where, since t >> J ,  some energies - J have been ignored. The hole states have no spin 
label, hence each value k" = k ?c = ( 2 x / N ) n ,  with n an integer, occurs once with k 
lying in the range --x to n. All the available levels are filled and hence each of the two 
poles in the Green's function contributes 114 to #k and the net value is nk = 112. This 
flat distribution in momentum space is trivially correct for half filling and the value of 1/2 
correctly obeys the relevant sum rule confirming the normalization shown in (26). 

Clearly if there are a small number of holes, it is those hole states with the smallest 
energy near k" = kn which are filled first. Because of the translations by fn/2,  it is 
the n k  values near +n/2 which change first. It follows, nt = 114 in a symmetric region 
about fn/2,  however more extensive calculations not reported here, show the presence of 
a thermodynamic density of holes (i) changes the spin wavefunction so that f n / 2  + &kF 
where kF is the Luttinger value of the Fermi momentum, i.e. one half of the spinless fermion 
value, so that the Fermi 'breaks' occur at kF and 3 k ~ .  (ii) There are new contributions to 
the Green's function, and (iii) there is a phase shift of x/2 for each site occupied by a hole 
which lies between the beginning and end site of the real space Green's function. It is (iii) 
which leads to the famous power-law behaviour at the Fermi breaks. 

It should be noted that (26). and the totally coherent result (27), are equivalent to an 
assumption of a limiting maximum thermodynamic density of (n/2 t, -n/2 $) spinon pairs 
in the ground state. This needs more detailed investigation. 
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In summary, we have developed a bond auxiliary particle formalism which at the level 
of second-order perturbation theory reproduces the ground state energy for the Heisenberg 
chain with an accuracy at the per cent level and yields, without renormalization, the key 
parameter, the spin velocity U,, with an accuracy of better than ten per cent. The degeneracy 
of the excitations is correct leading to the value R = 2 for the Wilson ratio. It has been 
shown how the method may be used to calculate the single-hole Green’s function in the 
thermodynamic limit of the t-J model for I >> J. It will be shown elsewhere that with a 
thermodynamic density of holes the same methods lead to Luttinger liquid behaviour. 
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